If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-36a-1=0
a = 1; b = -36; c = -1;
Δ = b2-4ac
Δ = -362-4·1·(-1)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-10\sqrt{13}}{2*1}=\frac{36-10\sqrt{13}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+10\sqrt{13}}{2*1}=\frac{36+10\sqrt{13}}{2} $
| 2(x-2)-3(5x-5)=35 | | x^2+32x+160=0 | | 3x+4=4x–7 | | x/12+3=-8 | | (8x+7)=(8x–7) | | 3(2f-5)=3(f+3) | | 6-4h=10 | | 1=4s+9 | | 3+5x-10=1 | | 4(n-2)+2=2(n+3)+6 | | 7e-12=2e+8 | | 4(x+13)=6 | | m+12.2÷5=9.7 | | 8(4x+2)=20 | | Z=48+14i | | Z=-16+30i | | 80=5x+4(18-x) | | 9^x−12×3^x+27=0 | | 90=5x+4(18-x) | | Z=-24+10i | | 3. 2(5x+58)=10x+4(21/3.5-11) | | (x+2)^2=60 | | 12r-4=21r | | 58=3x | | 2x/6+6=3x/5+8 | | 2.5=1+x/x+0.25) | | 6x2−8x=−1 | | 2.5=(1+x)/(x+0.25) | | 2.5=1+x/x+0.25 | | x+.023x=61921.93 | | 3w/5=w+1/2 | | 5×(y+8)=7y |